skip to main content


Search for: All records

Creators/Authors contains: "Amburg, Ilya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The hypergraph community detection problem seeks to identify groups of related vertices in hypergraph data. We propose an information-theoretic hypergraph community detection algorithm which compresses the observed data in terms of community labels and community-edge intersections. This algorithm can also be viewed as maximum-likelihood inference in a degree-corrected microcanonical stochastic blockmodel. We perform the compression/inference step via simulated annealing. Unlike several recent algorithms based on canonical models, our microcanonical algorithm does not require inference of statistical parameters such as vertex degrees or pairwise group connection rates. Through synthetic experiments, we find that our algorithm succeeds down to recently-conjectured thresholds for sparse random hypergraphs. We also find competitive performance in cluster recovery tasks on several hypergraph data sets.

     
    more » « less
  2. Abstract

    Many complex systems often contain interactions between more than two nodes, known ashigher-order interactions, which can change the structure of these systems in significant ways. Researchers often assume that all interactions paint a consistent picture of a higher-order dataset’s structure. In contrast, the connection patterns of individuals or entities in empirical systems are often stratified by interaction size. Ignoring this fact can aggregate connection patterns that exist only at certain scales of interaction. To isolate these scale-dependent patterns, we present an approach for analyzing higher-order datasets by filtering interactions by their size. We apply this framework to several empirical datasets from three domains to demonstrate that data practitioners can gain valuable information from this approach.

     
    more » « less
  3. Modern graph or network datasets often contain rich structure that goes beyond simple pairwise connections between nodes. This calls for complex representations that can capture, for instance, edges of different types as well as so-called “higher-order interactions” that involve more than two nodes at a time. However, we have fewer rigorous methods that can provide insight from such representations. Here, we develop a computational framework for the problem of clustering hypergraphs with categorical edge labels — or different interaction types — where clusters corresponds to groups of nodes that frequently participate in the same type of interaction. Our methodology is based on a combinatorial objective function that is related to correlation clustering on graphs but enables the design of much more efficient algorithms that also seamlessly generalize to hypergraphs. When there are only two label types, our objective can be optimized in polynomial time, using an algorithm based on minimum cuts. Minimizing our objective becomes NP-hard with more than two label types, but we develop fast approximation algorithms based on linear programming relaxations that have theoretical cluster quality guarantees. We demonstrate the efficacy of our algorithms and the scope of the model through problems in edge-label community detection, clustering with temporal data, and exploratory data analysis. 
    more » « less